Tuesday, May 20, 2008

Cosco Gravestone Doji


A "gravestone doji," as the name implies, is probably the most ominous candle of all. On that day, prices rallied, but could not stand the "altitude" they achieved. By the end of the day they came back and closed at the same level. Gravestone Doji's are the opposite of the Dragonfly Doji and are top reversal indicators when confirmed with bearish engulfings. As the name implies, gravestone doji's look like a gravestone, and could signal impending doom for a stock. Immediate resistance is $3.74 to $3.69 resistance band . If there is no bearish engulfing pattern tomorrow a breakout above the immediate resistance band will propel price to the next resistance band at $3.92 to $4.02 . Immediate support is $3.58 followed by the upper symmetrical triangle resistance turned support black downtrend line.

Jade Rocket


High volume as Jade rocket crosses over 50 days EMA resistance line and heads for next resistance at 15 cents. Major resistance expected at red downtrend line and 200 days EMA resistance line. Breakout above red downtrend line will challenge 17.5 cents resistance. Immediate support is 50 days EMA resistance turned support line. Next resistance is 10.5 cents.

Adult Stem Cells

With research on embryonic stem cells mired in controversy, adult stem cells are quietly providing the basis for striking advances toward new therapies.

The morning began with a first gamy whiff of what lay in store. Shortly after 9 a.m., Bradley Martin, his assistant Jin-Quang Kuang and a researcher named Ellen Flynn marched along a dimly lit, institutional-tiled corridor at the Johns Hopkins Hospital in Baltimore. After pausing to take a deep breath, they pushed through a green door and entered a small room where several robust Yorkshire pigs greeted them with braying squeals and frothing curiosity. Flynn wheeled a heart-imaging echocardiogram machine into the narrow aisle between the cages, and then Martin, a flimsy yellow surgical gown covering his blue jeans and sports shirt, stepped gingerly into one of the cages and gently wrapped an arm around the huge porker, a gesture that wavered between a hug and a headlock. "All those years of graduate school," Martin grunted over his shoulder, "are finally paying off." Spending your morning wrestling a 180-kilogram pig into position and holding it steady, while a colleague rubs a jelly-coated probe over the animal's chest in search of a good echocardiogram signal, against deafening squeals of porcine protest and the in-your-face odor of big animals kept in close quarters-that's not exactly how most people imagine the world of cell biology. But then Martin is not interested in ordinary cells-or ordinary biology. His foray into the animal room represents what could be one of the last steps in readying a futuristic form of coronary medicine for testing in humans. If all goes well, those human studies could begin as early as the end of this year.

Martin, a sandy-haired, good-humored senior researcher at Baltimore-based Osiris Therapeutics, has been paying weekly visits to this room for six months. It is a cardiac ward of sorts: all of the pigs in the room have suffered heart attacks. Some of them, however, have subsequently received a highly unusual form of treatment, an injection of stem cells-specifically, an adult form of these versatile progenitor cells isolated from bone marrow. It is Martin's hope that these special cells, known to biologists as adult mesenchymal stem cells, have grown and transformed themselves within the pigs' hearts to form new, healthy tissue right at the site of injury.

Indeed, it is the uncanny ability to zero in on areas of physiological damage and then to organize the process of healing and repair that makes these and other kinds of stem cells so laden with medical possibility. Most of the cells in the body are specialized to perform specific functions in specific tissues, but stem cells-found both in embryos and in various locations in the adult body-can form a number of different tissues and so could in theory be used to treat a vast array of diseases. Rebuilding hearts after heart attacks, regenerating livers ravaged by cirrhosis or viral disease, reconstructing damaged joints, seeding the brain with fresh neurons to reverse the effects of Parkinson's disease and Lou Gehrig's disease-those are just some of the fantastic medical promissory notes that doctors predict these remarkably potent cells will ultimately redeem.

Still, a professional rivalry has emerged between researchers who think stem cells derived from embryos have the greatest medical promise and those who are instead betting on cells derived from adult tissues. Embryonic stem cells are able to form more than 200 separate and distinct tissues, while adult stem cells are "multipotent," able to form just a limited number of tissues; the Osiris cells, for example, have only six possible fates. But because of their controversial origins in embryos left over from in vitro fertilization, embryonic stem cells have met fierce public opposition from religious and political conservatives that has slowed funding and research opportunities. And while President George W. Bush's August decision to allow limited federal funding for embryonic stem cell research could help open the field, its political future remains murky.

While this public drama has been playing out, embryonic stem cells' supposedly less potent and seemingly less glamorous biological cousins, the adult stem cells, have quietly been writing a fascinating story of their own-a story that in many ways is more advanced, clinically and commercially, than the embryonic stem cell story. While federal funding bans and policy debates have relegated human embryonic stem cell research to labs at a handful of companies, in the parallel universe of adult stem cell research has come great progress, with both companies and academic scientists publishing one striking finding after another. On the strength of those studies, a number of human trials using adult stem cells have been launched in the past two years, with several more high-profile experimental treatments scheduled to begin human testing within the next year.

http://www.technologyreview.com/Biotech/12643/

What kinds of gene mutations are possible?

The DNA sequence of a gene can be altered in a number of ways. Gene mutations have varying effects on health, depending on where they occur and whether they alter the function of essential proteins. The types of mutations include:

Missense mutation (illustration)

This type of mutation is a change in one DNA base pair that results in the substitution of one amino acid for another in the protein made by a gene.

Nonsense mutation (illustration)

A nonsense mutation is also a change in one DNA base pair. Instead of substituting one amino acid for another, however, the altered DNA sequence prematurely signals the cell to stop building a protein. This type of mutation results in a shortened protein that may function improperly or not at all.

Insertion (illustration)

An insertion changes the number of DNA bases in a gene by adding a piece of DNA. As a result, the protein made by the gene may not function properly.

Deletion (illustration)

A deletion changes the number of DNA bases by removing a piece of DNA. Small deletions may remove one or a few base pairs within a gene, while larger deletions can remove an entire gene or several neighboring genes. The deleted DNA may alter the function of the resulting protein(s).

Duplication (illustration)

A duplication consists of a piece of DNA that is abnormally copied one or more times. This type of mutation may alter the function of the resulting protein.

Frameshift mutation (illustration)

This type of mutation occurs when the addition or loss of DNA bases changes a gene’s reading frame. A reading frame consists of groups of 3 bases that each code for one amino acid. A frameshift mutation shifts the grouping of these bases and changes the code for amino acids. The resulting protein is usually nonfunctional. Insertions, deletions, and duplications can all be frameshift mutations.

Repeat expansion (illustration)

Nucleotide repeats are short DNA sequences that are repeated a number of times in a row. For example, a trinucleotide repeat is made up of 3-base-pair sequences, and a tetranucleotide repeat is made up of 4-base-pair sequences. A repeat expansion is a mutation that increases the number of times that the short DNA sequence is repeated. This type of mutation can cause the resulting protein to function improperly.

http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/possiblemutations