| ||||||
| After this hybridization step is complete, a researcher will place the microarray in a "reader" or "scanner" that consists of some lasers, a special microscope, and a camera. The fluorescent tags are excited by the laser, and the microscope and camera work together to create a digital image of the array. These data are then stored in a computer, and a special program is used either to calculate the red-to-green fluorescence ratio or to subtract out background data for each microarray spot by analyzing the digital image of the array. If calculating ratios, the program then creates a table that contains the ratios of the intensity of red-to-green fluorescence for every spot on the array. For example, using the scenario outlined above, the computer may conclude that both cell types express gene A at the same level, that cell 1 expresses more of gene B, that cell 2 expresses more of gene C, and that neither cell expresses gene D. But remember, this is a simple example used to demonstrate key points in experimental design. Some microarray experiments can contain up to 30,000 target spots. Therefore, the data generated from a single array can mount up quickly |
http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html
No comments:
Post a Comment